Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of SoCYP85A1 Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities.

Identifieur interne : 000431 ( Main/Exploration ); précédent : 000430; suivant : 000432

Overexpression of SoCYP85A1 Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities.

Auteurs : Fangmeng Duan [République populaire de Chine] ; Wenwen Song [République populaire de Chine]

Source :

RBID : pubmed:30984218

Abstract

Black shank caused by Phytophthora nicotianae is one of the most devastating diseases in tobacco production. In this study, we characterized a novel cytochromic resistance gene, SoCYP85A1, from spinach, which was upregulated in response to P. nicotianae infection. Overexpression of SoCYP85A1 in tobacco resulted in remarkable resistance to pathogen inoculation, with diverse resistance levels in different transgenic lines. Meanwhile, a significant accumulation of castasterone (CS) was detected in transgenic plants when challenged with the pathogen. Moreover, activities of antioxidant enzymes were enhanced by SoCYP85A1 in the transgenic lines as compared to those in the wild types inoculated with P. nicotianae. In addition, the alteration of CS content resulted in interference of phytohormone homeostasis. Overall, these results demonstrate that SoCYP85A1 can participate in the defense response to P. nicotianae through the involvement of defense enzymes and by interaction with certain phytohormones. Our findings suggest that SoCYP85A1 could be used as a potential candidate gene for improving resistance to black shank disease in tobacco and other economic crops.

DOI: 10.3389/fpls.2019.00349
PubMed: 30984218
PubMed Central: PMC6448038


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of
<i>SoCYP85A1</i>
Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities.</title>
<author>
<name sortKey="Duan, Fangmeng" sort="Duan, Fangmeng" uniqKey="Duan F" first="Fangmeng" last="Duan">Fangmeng Duan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Wenwen" sort="Song, Wenwen" uniqKey="Song W" first="Wenwen" last="Song">Wenwen Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30984218</idno>
<idno type="pmid">30984218</idno>
<idno type="doi">10.3389/fpls.2019.00349</idno>
<idno type="pmc">PMC6448038</idno>
<idno type="wicri:Area/Main/Corpus">000501</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000501</idno>
<idno type="wicri:Area/Main/Curation">000501</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000501</idno>
<idno type="wicri:Area/Main/Exploration">000501</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of
<i>SoCYP85A1</i>
Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities.</title>
<author>
<name sortKey="Duan, Fangmeng" sort="Duan, Fangmeng" uniqKey="Duan F" first="Fangmeng" last="Duan">Fangmeng Duan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Wenwen" sort="Song, Wenwen" uniqKey="Song W" first="Wenwen" last="Song">Wenwen Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Black shank caused by
<i>Phytophthora nicotianae</i>
is one of the most devastating diseases in tobacco production. In this study, we characterized a novel cytochromic resistance gene,
<i>SoCYP85A1</i>
, from spinach, which was upregulated in response to
<i>P. nicotianae</i>
infection. Overexpression of
<i>SoCYP85A1</i>
in tobacco resulted in remarkable resistance to pathogen inoculation, with diverse resistance levels in different transgenic lines. Meanwhile, a significant accumulation of castasterone (CS) was detected in transgenic plants when challenged with the pathogen. Moreover, activities of antioxidant enzymes were enhanced by
<i>SoCYP85A1</i>
in the transgenic lines as compared to those in the wild types inoculated with
<i>P. nicotianae</i>
. In addition, the alteration of CS content resulted in interference of phytohormone homeostasis. Overall, these results demonstrate that
<i>SoCYP85A1</i>
can participate in the defense response to
<i>P. nicotianae</i>
through the involvement of defense enzymes and by interaction with certain phytohormones. Our findings suggest that
<i>SoCYP85A1</i>
could be used as a potential candidate gene for improving resistance to black shank disease in tobacco and other economic crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30984218</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of
<i>SoCYP85A1</i>
Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities.</ArticleTitle>
<Pagination>
<MedlinePgn>349</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.00349</ELocationID>
<Abstract>
<AbstractText>Black shank caused by
<i>Phytophthora nicotianae</i>
is one of the most devastating diseases in tobacco production. In this study, we characterized a novel cytochromic resistance gene,
<i>SoCYP85A1</i>
, from spinach, which was upregulated in response to
<i>P. nicotianae</i>
infection. Overexpression of
<i>SoCYP85A1</i>
in tobacco resulted in remarkable resistance to pathogen inoculation, with diverse resistance levels in different transgenic lines. Meanwhile, a significant accumulation of castasterone (CS) was detected in transgenic plants when challenged with the pathogen. Moreover, activities of antioxidant enzymes were enhanced by
<i>SoCYP85A1</i>
in the transgenic lines as compared to those in the wild types inoculated with
<i>P. nicotianae</i>
. In addition, the alteration of CS content resulted in interference of phytohormone homeostasis. Overall, these results demonstrate that
<i>SoCYP85A1</i>
can participate in the defense response to
<i>P. nicotianae</i>
through the involvement of defense enzymes and by interaction with certain phytohormones. Our findings suggest that
<i>SoCYP85A1</i>
could be used as a potential candidate gene for improving resistance to black shank disease in tobacco and other economic crops.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Fangmeng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Wenwen</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">SoCYP85A1</Keyword>
<Keyword MajorTopicYN="N">black shank disease</Keyword>
<Keyword MajorTopicYN="N">castasterone</Keyword>
<Keyword MajorTopicYN="N">defense enzymes</Keyword>
<Keyword MajorTopicYN="N">transgenic tobacco</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30984218</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.00349</ArticleId>
<ArticleId IdType="pmc">PMC6448038</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 May;112(1):104-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):770-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):287-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):1135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2397-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Aug 11;126(3):467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16901781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1750-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Sep 18;387(2):300-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19577539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Jan;37(1):345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19728156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 19;10:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20642851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Mar;6(3):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21364326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22087001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):303-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22087006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1833-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22353574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Sep;102(9):848-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22646244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Oct;17(10):594-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Sep 7;287(37):31551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):1139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23297052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Anal. 2013 Jul-Aug;24(4):386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23436553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Apr 24;14(5):8740-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):2207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Apr;17(3):412-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26123657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Mar;14(3):1021-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26383874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2015 Dec 09;14(4):16415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26662438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Jan 28;16:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26822290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 23;7:689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 May;214(3):1260-1266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28134995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Oct;15(10):1309-1321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28258966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Nov 16;8:1963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29201034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Nov 09;8:1909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29209339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2018 Jun;102(6):1108-1114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2002 Dec;86(12):1303-1309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30818432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Duan, Fangmeng" sort="Duan, Fangmeng" uniqKey="Duan F" first="Fangmeng" last="Duan">Fangmeng Duan</name>
</noRegion>
<name sortKey="Song, Wenwen" sort="Song, Wenwen" uniqKey="Song W" first="Wenwen" last="Song">Wenwen Song</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000431 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000431 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30984218
   |texte=   Overexpression of SoCYP85A1 Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30984218" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024